[1]
X. Chen and B. Zhong, “Contrast-Guided Wireframe Parsing,” in 2024 IEEE International Conference on Image Processing (ICIP), 2024, pp. 360–366. doi: 10.1109/ICIP51287.2024.10647804.
[2]
R. Pautrat, D. Barath, V. Larsson, M. R. Oswald, and M. Pollefeys, “DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients,” in Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, Jun. 2023.
[3]
X. Lin and C. Wang, “AirLine: Efficient Learnable Line Detection with Local Edge Voting,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 3270–3277. doi: 10.1109/IROS55552.2023.10341655.
[4]
L. Teplyakov, L. Erlygin, and E. Shvets, “LSDNet: Trainable Modification of LSD Algorithm for Real-Time Line Segment Detection,” IEEE Access, vol. 10, pp. 45256–45265, 2022, doi: 10.1109/ACCESS.2022.3169177.
[5]
L. Teplyakov, K. Kaymakov, E. Shvets, and D. Nikolaev, “Line detection via a lightweight CNN with a Hough layer,” in Thirteenth International Conference on Machine Vision, W. Osten, D. P. Nikolaev, and J. Zhou, Eds., SPIE, 2021, p. 116051B. doi: 10.1117/12.2587167.
[6]
Y. Lin, S. L. Pintea, and J. C. van Gemert, “Deep Hough-Transform Line Priors,” in Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII, Berlin, Heidelberg: Springer-Verlag, 2020, pp. 323–340. doi: 10.1007/978-3-030-58542-6_20.
[7]
E. J. Almazàn, R. Tal, Y. Qian, and J. H. Elder, “MCMLSD: A Dynamic Programming Approach to Line Segment Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5854–5862. doi: 10.1109/CVPR.2017.620.