[1]
X. Tong, S. Peng, B. Tian, Y. Guo, X. Huang, and Z. Ma, “Improving Transformer Based Line Segment Detection with Matched Predicting and Re-ranking.” 2025. [Online]. Available: https://arxiv.org/abs/2502.17766
[2]
X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang, “Generating 3D House Wireframes with Semantics,” in Computer Vision – ECCV 2024, A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, Eds., Cham: Springer Nature Switzerland, 2025, pp. 223–240.
[3]
J. Zhang, J. Yang, F. Fu, and J. Ma, “Structural asymmetric convolution for wireframe parsing,” Engineering Applications of Artificial Intelligence, vol. 128, p. 107410, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107410.
[4]
J. Zhang, J. Yang, F. Fu, and J. Ma, “Multi-scale Structural Asymmetric Convolution for Wireframe Parsing,” in Neural Information Processing, Singapore: Springer Nature Singapore, 2024, pp. 239–251.
[5]
H. Yu, H. Li, W. Yang, L. Yu, and G.-S. Xia, “Detecting Line Segments in Motion-Blurred Images With Events,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 5, pp. 2866–2881, 2024, doi: 10.1109/TPAMI.2023.3334877.
[6]
J. Yang et al., “MLNet: An multi-scale line detector and descriptor network for 3D reconstruction,” Knowledge-Based Systems, vol. 289, p. 111476, 2024, doi: https://doi.org/10.1016/j.knosys.2024.111476.
[7]
N. Xue et al., “NEAT: Distilling 3D Wireframes from Neural Attraction Fields,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 19968–19977. doi: 10.1109/CVPR52733.2024.01887.
[8]
X. Wang, H. Zhang, H. Yu, and X. Wan, “EvLSD-IED: Event-Based Line Segment Detection With Image-to-Event Distillation,” IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1–12, 2024, doi: 10.1109/TIM.2024.3460882.
[9]
Z. Liu, X. Wang, B. Pu, J. Tang, and J. Sun, “WireframePose: Monocular 6-D Pose Estimation of Metal Parts Based on Wireframe Extraction and Matching,” IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1–10, 2024, doi: 10.1109/TIM.2024.3460945.
[10]
J. Ji, J. Shen, X. Wang, T. Feng, and S. Wu, “WirePAuS: Auxiliary-free Single-shot Wireframe Parsing,” in 2024 IEEE International Conference on Multimedia and Expo (ICME), 2024, pp. 1–6. doi: 10.1109/ICME57554.2024.10688260.
[11]
S. Janampa and M. Pattichis, “DT-LSD: Deformable Transformer-based Line Segment Detection,” arXiv preprint arXiv:2411.13005, 2024.
[12]
Z. Guo et al., “One-Stage Wireframe Parsing in Fish-Eye Images,” in Pattern Recognition and Computer Vision, Q. Liu, H. Wang, Z. Ma, W. Zheng, H. Zha, X. Chen, L. Wang, and R. Ji, Eds., Singapore: Springer Nature Singapore, 2024, pp. 264–275.
[13]
S. Einizinab, K. Khoshelham, S. Winter, and P. Christopher, “Global localization for Mixed Reality visualization using wireframe extraction from images,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. X-4/W5-2024, pp. 119–126, 2024, doi: 10.5194/isprs-annals-X-4-W5-2024-119-2024.
[14]
Y. Zhou et al., “Semantic Wireframe Detection.” 2023. doi: 10.24406/publica-2179.
[15]
N. Xue et al., “Holistically-Attracted Wireframe Parsing: From Supervised to Self-Supervised Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 14727–14744, 2023, doi: 10.1109/TPAMI.2023.3312749.
[16]
D. Gillsjö, G. Flood, and K. Åström, “Semantic Room Wireframe Detection from a Single View,” in 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, Aug. 2022, pp. 1886–1893. doi: 10.1109/ICPR56361.2022.9956252.
[17]
W. Ma, B. Tan, N. Xue, T. Wu, X. Zheng, and G.-S. Xia, “HoW-3D: Holistic 3D Wireframe Perception from a Single Image,” in 2022 International Conference on 3D Vision (3DV), 2022, pp. 596–605. doi: 10.1109/3DV57658.2022.00070.
[18]
N. Kong, K. Park, and H. Goka, “Hole-robust Wireframe Detection,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, pp. 2684–2693. doi: 10.1109/WACV51458.2022.00274.
[19]
J. Huang, X. Lu, M. Yu, and F. Li, “Self-supervised Lightweight Line Segment Detector and Descriptor,” in 2022 China Automation Congress (CAC), 2022, pp. 5263–5268. doi: 10.1109/CAC57257.2022.10055957.
[20]
H. Zhang, Y. Luo, F. Qin, Y. He, and X. Liu, “ELSD: Efficient Line Segment Detector and Descriptor,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 2949–2958. doi: 10.1109/ICCV48922.2021.00296.
[21]
N. Xue et al., “Learning Regional Attraction for Line Segment Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 6, pp. 1998–2013, 2021, doi: 10.1109/TPAMI.2019.2958642.
[22]
Y. Xu, W. Xu, D. Cheung, and Z. Tu, “Line Segment Detection Using Transformers without Edges,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 4255–4264. doi: 10.1109/CVPR46437.2021.00424.
[23]
C. Qiao, T. Bai, Z. Xiang, Q. Qian, and Y. Bi, “Superline: A Robust Line Segment Feature for Visual SLAM,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 5664–5670. doi: 10.1109/IROS51168.2021.9636435.
[24]
R. Pautrat, J.-T. Lin, V. Larsson, M. R. Oswald, and M. Pollefeys, “SOLD2: Self-supervised Occlusion-aware Line Description and Detection,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 11363–11373. doi: 10.1109/CVPR46437.2021.01121.
[25]
Q. Ma et al., “WGLSM: An End-to-End Line Matching Network Based on Graph Convolution,” Neurocomput., vol. 453, no. C, pp. 195–208, 2021, doi: 10.1016/j.neucom.2021.04.125.
[26]
H. Li, H. Yu, J. Wang, W. Yang, L. Yu, and S. Scherer, “ULSD: Unified line segment detection across pinhole, fisheye, and spherical cameras,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 178, pp. 187–202, 2021, doi: https://doi.org/10.1016/j.isprsjprs.2021.06.004.
[27]
G. Gu, B. Ko, S. Go, S.-H. Lee, J. Lee, and M. Shin, “Towards Real-time and Light-weight Line Segment Detection.” arXiv, 2021. doi: 10.48550/ARXIV.2106.00186.
[28]
X. Dai, X. Yuan, H. Gong, and Y. Ma, “Fully Convolutional Line Parsing.” arXiv, 2021. doi: 10.48550/ARXIV.2104.11207.
[29]
H. Abdellali, R. Frohlich, V. Vilagos, and Z. Kato, “L2D2: Learnable Line Detector and Descriptor,” in 2021 International Conference on 3D Vision (3DV), 2021, pp. 442–452. doi: 10.1109/3DV53792.2021.00054.
[30]
N. Xue et al., “Holistically-Attracted Wireframe Parsing,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2785–2794. doi: 10.1109/CVPR42600.2020.00286.
[31]
Q. Meng, J. Zhang, Q. Hu, X. He, and J. Yu, “LGNN: A Context-Aware Line Segment Detector,” in Proceedings of the 28th ACM International Conference on Multimedia, New York, NY, USA: Association for Computing Machinery, 2020, pp. 4364–4372. [Online]. Available: https://doi.org/10.1145/3394171.3413784
[32]
S. Huang, F. Qin, P. Xiong, N. Ding, Y. He, and X. Liu, “TP-LSD: Tri-Points Based Line Segment Detector,” in Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII, Berlin, Heidelberg: Springer-Verlag, 2020, pp. 770–785. doi: 10.1007/978-3-030-58583-9_46.
[33]
Y. Zhou et al., “Learning to Reconstruct 3D Manhattan Wireframes From a Single Image,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 7697–7706. doi: 10.1109/ICCV.2019.00779.
[34]
Y. Zhou, H. Qi, and Y. Ma, “End-to-End Wireframe Parsing,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 962–971. doi: 10.1109/ICCV.2019.00105.
[35]
Z. Zhang et al., “PPGNet: Learning Point-Pair Graph for Line Segment Detection,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7098–7107. doi: 10.1109/CVPR.2019.00727.
[36]
Z. Xue, N. Xue, G.-S. Xia, and W. Shen, “Learning to Calibrate Straight Lines for Fisheye Image Rectification,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 1643–1651. doi: 10.1109/CVPR.2019.00174.
[37]
N. Xue, S. Bai, F. Wang, G.-S. Xia, T. Wu, and L. Zhang, “Learning Attraction Field Representation for Robust Line Segment Detection,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 1595–1603. doi: 10.1109/CVPR.2019.00169.
[38]
Y. Sun, X. Han, K. Sun, B. Li, Y. Chen, and M. Li, “Sem-LSD: A Learning-based Semantic Line Segment Detector.” 2019.
[39]
K. Huang and S. Gao, “Wireframe Parsing With Guidance of Distance Map,” IEEE Access, vol. 7, pp. 141036–141044, 2019, doi: 10.1109/ACCESS.2019.2943885.
[40]
K. Huang, Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma, “Learning to Parse Wireframes in Images of Man-Made Environments,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 626–635. doi: 10.1109/CVPR.2018.00072.