[1]
J. Yang et al., “MLNet: An multi-scale line detector and descriptor network for 3D reconstruction,” Knowledge-Based Systems, vol. 289, p. 111476, 2024, doi: https://doi.org/10.1016/j.knosys.2024.111476.
[2]
S. Einizinab, K. Khoshelham, S. Winter, and P. Christopher, “Global localization for Mixed Reality visualization using wireframe extraction from images,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. X-4/W5-2024, pp. 119–126, 2024, doi: 10.5194/isprs-annals-X-4-W5-2024-119-2024.
[3]
J. Huang, X. Lu, M. Yu, and F. Li, “Self-supervised Lightweight Line Segment Detector and Descriptor,” in 2022 China Automation Congress (CAC), 2022, pp. 5263–5268. doi: 10.1109/CAC57257.2022.10055957.
[4]
X. Cao, Y. Huang, Y. Huang, Y. Li, and S. Cai, “LDAM: line descriptors augmented by attention mechanism,” in Fourteenth International Conference on Digital Image Processing (ICDIP 2022), X. Jiang, W. Tao, D. Zeng, and Y. Xie, Eds., SPIE, 2022, p. 1234203. doi: 10.1117/12.2644245.
[5]
H. Zhang, Y. Luo, F. Qin, Y. He, and X. Liu, “ELSD: Efficient Line Segment Detector and Descriptor,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 2949–2958. doi: 10.1109/ICCV48922.2021.00296.
[6]
S. Yoon and A. Kim, “Line as a Visual Sentence: Context-Aware Line Descriptor for Visual Localization,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8726–8733, 2021, doi: 10.1109/LRA.2021.3111760.
[7]
C. Qiao, T. Bai, Z. Xiang, Q. Qian, and Y. Bi, “Superline: A Robust Line Segment Feature for Visual SLAM,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 5664–5670. doi: 10.1109/IROS51168.2021.9636435.
[8]
R. Pautrat, J.-T. Lin, V. Larsson, M. R. Oswald, and M. Pollefeys, “SOLD2: Self-supervised Occlusion-aware Line Description and Detection,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 11363–11373. doi: 10.1109/CVPR46437.2021.01121.
[9]
H. Liu, Y. Liu, M. Fu, Y. Wei, Z. Huo, and Y. Qiao, “Towards learning line descriptors from patches: a new paradigm and large-scale dataset,” International Journal of Machine Learning and Cybernetics, vol. 12, no. 3, pp. 877–890, 2021.
[10]
H. Abdellali, R. Frohlich, V. Vilagos, and Z. Kato, “L2D2: Learnable Line Detector and Descriptor,” in 2021 International Conference on 3D Vision (3DV), 2021, pp. 442–452. doi: 10.1109/3DV53792.2021.00054.
[11]
M. Lange, C. Raisch, and A. Schilling, “WLD: A Wavelet and Learning based Line Descriptor for Line Feature Matching,” in Vision, Modeling, and Visualization, J. Krüger, M. Niessner, and J. Stückler, Eds., The Eurographics Association, 2020. doi: 10.2312/vmv.20201186.
[12]
A. Vakhitov and V. Lempitsky, “Learnable Line Segment Descriptor for Visual SLAM,” IEEE Access, vol. 7, pp. 39923–39934, 2019, doi: 10.1109/ACCESS.2019.2901584.
[13]
M. Lange, F. Schweinfurth, and A. Schilling, “DLD: A Deep Learning Based Line Descriptor for Line Feature Matching,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5910–5915. doi: 10.1109/IROS40897.2019.8968062.
[14]
S. Zhuang, D. Zou, L. Pei, and D. H. P. Liu, “A binary robust line descriptor,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat., 2016, pp. 1–8.